M1.		(a) M1 curly arrow from lone pair on oxygen of hydroxide ion to H atom on C-H adjacent to C-Br	1
		M2 curly arrow from single bond of adjacent C-H to adjacent single bond C-C (only credit M2 if M1 is being attempted to correct H atom)	1
		M3 curly arrow from C-Br bond to side of Br atom (credit M3 independently)	1
	(b)	MI credit a correct structure for either geometrical E-Z isomer <u>and</u> its designation as either <i>cis</i> or <i>trans</i> . OR credit <u>two</u> correct geometrical E-Z isomer structures (ignore the names) OR credit <u>two</u> correct names for <i>cis</i> pent-2-ene and <i>trans</i> pent-2-ene (ignore the structures)	1
		M2 credit a second mark if all four parts of the required structures and names are correct. (credit "linear" structures) (insist on the alkyl groups being attached clearly by C-C bonds)	1
	(c)	(i) MI curly arrow from middle of C = C bond to H atom on H-Br (penalise M1 if partial negative charge or formal positive charge on H) (penalise MI if pent-2-ene is used)	1
		M2 curly arrow from H-Br bond to side of Br atom	1
		M3 correct structure for correct secondary carbocation	1
		M4 curly arrow from lone pair on bromide ion to the positive carbon of carbocation, ensuring that bromide ion has a negative charge.	
		(with the exception of pent-2-ene, if the wrong alkene is used, only penalise the structure M3) (penalise the use of two dots in addition to a covalent bond,	
		once only)	1

(ii) 1-bromopentane

1

(iii) MI 2-bromopentane is formed *via* the secondary (or 2°) carbocation

1

OR 1-bromopentane is formed *via* the primary (or 1°) carbocation

M2 a secondary carbocation is more stable than a primary carbocation -

award this mark only if the quality of language justifies the award.

(the argument must involve clear statements about <u>carbocations</u>)

[12]

M2.C

[1]

M3. (a) Structure of **P**:

$$CH_3$$
 CH_2CH_3 $CH = CH_2$ (1)

Structures of **Q** and **R**:

$$CH_3$$
 $C=C$ CH_3 and CH_3 $C=C$ $CH(CH_3)_2$ $CH(CH_3)_2$

Q and R in any order

3

(b) (i) Racemic mixture: equal mixture of optical isomers / enantiomers

OR in explanation

Explanation: planar (>C=O) (1) attack from either side is equally likely (1)

(ii) Reagent S: HCN or (KCN / HCl or H₂SO₄) (1)

CH₃CH₂-
$$\overset{OH}{\overset{|}{\text{C}}}$$
 CH₃

Compound T : CN (1)

Compound U: CH_3 C=C CH_3 CN (1)

M4. (a) (i) Molecule/compound/consists/composed/made up of hydrogen and carbon only **(1)**

- (ii) C_nH_{2n+2} (1)
- (iii) C₆H₁₄ only **(1)**Do not credit structures alone or in addition.

3

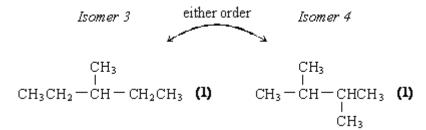
(b) Chemically similar / react in same way / same chemistry Differ by CH₂ gradation in physical properties OR specified trend e.g. b.p. same functional group

Any 2, 2 marks 1 + 1 Not same molecular formula

2

6

[9]


(c) (i) Same molecular formula (1) NOT same Mr

different structural formula / structures (1) (or atoms arranged in different way)

NOT different spatial arrangements Only credit M2 if M1 correct

(ii) 2-methylpentane (1) 2,2-dimethylbutane (1)

(iii)

OR correct condensed / structural formula
Penalise "sticks" once

Penalise absence of vertical bonds once penalise badly drawn bonds once (vertical between H atoms)

6

(d) (i) M1 % by mass of H =
$$7.7(0)$$
% (1) M2 mol H = $7.70 / 1 = 7.70$ mol C = $92.3 / 12 = 7.69$ (1)

M3 (ratio 1:1 ∴) CH

Credit variations for M2 e.g. $78 \times \frac{77}{100} = 6$

$$\frac{78}{12} \times \frac{92.3}{100} = 6$$

Correct answer = 3 marks

(ii) (CH has empirical mass of 13 and
$$\frac{78}{13} = 6$$
 ...) C₆H₆ (1)
Correct answer 1 mark

[15]

M5. (i)					
Isomer	Name				
CH ₃ CH ₂ CH ₂ CH ₂ OH	butan-1-ol				
CH ₃ CH ₃ —C—CH ₃ OH	2-methylpropan-2-ol				
CH ₃ —CH—CH ₂ OH CH ₃	(2-)methyl propan-1-ol (1)	NOT prop-1-ol			
CH ₃ CH ₂ —CH—CH ₃ OH	OR 2-butanol	NOT but-2-ol NOT hydroxy No RE			

Allow e in the names

(ii) Structural (1) OR chain and position(al)

M6. (a) \mathbf{A} any \mathbf{C}_s alkene

В

1

2

3

[3]

etc
$$H_2$$
 H_2
 H_3
 H_4

(b) **C**

$$H_3C-C$$
OH $H-C$ O- CH_3

or CH₃COOH or HCOOCH₃

D

or HOCH₂CHO

(c) **E**

F

$$CH_3CH_2-C \bigcirc O \\ O-CH_2CH_3 \quad (allow \, C_2H_5)$$

(d) **G**

1

1

1

Н

(e) I

J

$$H$$
 $C=C$ CH_2CH_3 CH_2CH_3 (allow C_2H_5) **NOT** hex-3-ene

[10]

1

1

1

1